Agpat6--a novel lipid biosynthetic gene required for triacylglycerol production in mammary epithelium.

نویسندگان

  • Anne P Beigneux
  • Laurent Vergnes
  • Xin Qiao
  • Steven Quatela
  • Ryan Davis
  • Steven M Watkins
  • Rosalind A Coleman
  • Rosemary L Walzem
  • Mark Philips
  • Karen Reue
  • Stephen G Young
چکیده

In analyzing the sequence tags for mutant mouse embryonic stem (ES) cell lines in BayGenomics (a mouse gene-trapping resource), we identified a novel gene, 1-acylglycerol-3-phosphate O-acyltransferase (Agpat6), with sequence similarities to previously characterized glycerolipid acyltransferases. Agpat6's closest family member is another novel gene that we have provisionally designated Agpat8. Both Agpat6 and Agpat8 are conserved from plants, nematodes, and flies to mammals. AGPAT6, which is predicted to contain multiple membrane-spanning helices, is found exclusively within the endoplasmic reticulum (ER) in mammalian cells. To gain insights into the in vivo importance of Agpat6, we used the Agpat6 ES cell line from BayGenomics to create Agpat6-deficient (Agpat6-/-) mice. Agpat6-/- mice lacked full-length Agpat6 transcripts, as judged by northern blots. One of the most striking phenotypes of Agpat6-/- mice was a defect in lactation. Pups nursed by Agpat6-/- mothers die perinatally. Normally, Agpat6 is expressed at high levels in the mammary epithelium of breast tissue, but not in the surrounding adipose tissue. Histological studies revealed that the aveoli and ducts of Agpat6-/- lactating mammary glands were underdeveloped, and there was a dramatic decrease in the size and number of lipid droplets within mammary epithelial cells and ducts. Also, the milk from Agpat6-/- mice was markedly depleted in diacylglycerols and triacylglycerols. Thus, we identified a novel glycerolipid acyltransferase of the ER, AGPAT6, which is crucial for the production of milk fat by the mammary gland.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of a novel sn-glycerol-3-phosphate acyltransferase isoform, GPAT4, as the enzyme deficient in Agpat6-/- mice.

Elucidation of the metabolic pathways of triacylglycerol (TAG) synthesis is critical to the understanding of chronic metabolic disorders such as obesity, cardiovascular disease, and diabetes. sn-Glycerol-3-phosphate acyltransferase (GPAT) and sn-1-acylglycerol-3-phosphate acyltransferase (AGPAT) catalyze the first and second steps in de novo TAG synthesis. AGPAT6 is one of eight AGPAT isoforms ...

متن کامل

Molecular cloning, sequence characterization, and gene expression profiling of a novel water buffalo (Bubalus bubalis) gene, AGPAT6.

Several 1-acylglycerol-3-phosphate-O-acyltransferases (AGPATs) can acylate lysophosphatidic acid to produce phosphatidic acid. Of the eight AGPAT isoforms, AGPAT6 is a crucial enzyme for glycerolipids and triacylglycerol biosynthesis in some mammalian tissues. We amplified and identified the complete coding sequence (CDS) of the water buffalo AGPAT6 gene by using the reverse transcription-polym...

متن کامل

Agpat6 deficiency causes subdermal lipodystrophy and resistance to obesity.

Triglyceride synthesis in most mammalian tissues involves the sequential addition of fatty acids to a glycerol backbone, with unique enzymes required to catalyze each acylation step. Acylation at the sn-2 position requires 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) activity. To date, seven Agpat genes have been identified based on activity and/or sequence similarity, but their physiol...

متن کامل

AGPAT6 is a novel microsomal glycerol-3-phosphate acyltransferase.

AGPAT6 is a member of the 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) family that appears to be important in triglyceride biosynthesis in several tissues, but the precise biochemical function of the enzyme is unknown. In the current study, we show that AGPAT6 is a microsomal glycerol-3-phosphate acyltransferase (GPAT). Membranes from HEK293 cells overexpressing human AGPAT6 had higher ...

متن کامل

Modifications of the metabolic pathways of lipid and triacylglycerol production in microalgae

Microalgae have presented themselves as a strong candidate to replace diminishing oil reserves as a source of lipids for biofuels. Here we describe successful modifications of terrestrial plant lipid content which increase overall lipid production or shift the balance of lipid production towards lipid varieties more useful for biofuel production. Our discussion ranges from the biosynthetic path...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of lipid research

دوره 47 4  شماره 

صفحات  -

تاریخ انتشار 2006